CUED at ProbSum 2023: Hierarchical Ensemble of Summarization Models

Potsawee Manakul, Yassir Fathullah, Adian Liusie, Vyas Raina, Vatsal Raina, Mark Gales

BioNLP and BioNLP-ST 2023 Short Paper

TLDR: In this paper, we consider the challenge of summarizing patients medical progress notes in a limited data setting. For the Problem List Summarization (shared task 1A) at the BioNLP Workshop 2023, we demonstrate that ClinicalT5 fine-tuned to 765 medical clinic notes outperforms other extractive, abst
You can open the #paper-BioNLP_108 channel in a separate window.
Abstract: In this paper, we consider the challenge of summarizing patients medical progress notes in a limited data setting. For the Problem List Summarization (shared task 1A) at the BioNLP Workshop 2023, we demonstrate that ClinicalT5 fine-tuned to 765 medical clinic notes outperforms other extractive, abstractive and zero-shot baselines, yielding reasonable baseline systems for medical note summarization. Further, we introduce Hierarchical Ensemble of Summarization Models (HESM), consisting of token-level ensembles of diverse fine-tuned ClinicalT5 models, followed by Minimum Bayes Risk (MBR) decoding. Our HESM approach lead to a considerable summarization performance boost, and when evaluated on held-out challenge data achieved a ROUGE-L of 32.77, which was the best-performing system at the top of the shared task leaderboard.