Hospital Discharge Summarization Data Provenance
Paul Landes, Aaron Chaise, Kunal Patel, Sean Huang, Barbara Di Eugenio
BioNLP and BioNLP-ST 2023 Long paper Paper
TLDR:
Summarization of medical notes has been studied for decades with hospital discharge summaries garnering recent interest in the research community. While methods for summarizing these notes have been the focus, there has been little work in understanding the feasibility of this task. We believe this
You can open the
#paper-BioNLP_59
channel in a separate window.
Abstract:
Summarization of medical notes has been studied for decades with hospital discharge summaries garnering recent interest in the research community. While methods for summarizing these notes have been the focus, there has been little work in understanding the feasibility of this task. We believe this effort is warranted given the notes' length and complexity, and that they are often riddled with poorly formatted structured data and redundancy in copy and pasted text. In this work, we investigate the feasibility of the summarization task by finding the origin, or data provenance, of the discharge summary's source text. As a motivation to understanding the data challenges of the summarization task, we present DSProv, a new dataset of 51 hospital admissions annotated by clinical informatics physicians. The dataset is analyzed for semantics and the extent of copied text from human authored electronic health record (EHR) notes. We also present a novel unsupervised method of matching notes used in discharge summaries, and release our annotation dataset1 and source code to the community.