Hindi Chatbot for Supporting Maternal and Child Health Related Queries in Rural India

Ritwik Mishra, Simranjeet Singh, Jasmeet Kaur, Pushpendra Singh, Rajiv Shah

The 5th Workshop on Clinical Natural Language Processing (ClinicalNLP) N/a Paper

TLDR: In developing countries like India, doctors and healthcare professionals working in public health spend significant time answering health queries that are fact-based and repetitive. Therefore, we propose an automated way to answer maternal and child health-related queries. A database of Frequently A
You can open the #paper-ClinicalNLP_13 channel in a separate window.
Abstract: In developing countries like India, doctors and healthcare professionals working in public health spend significant time answering health queries that are fact-based and repetitive. Therefore, we propose an automated way to answer maternal and child health-related queries. A database of Frequently Asked Questions (FAQs) and their corresponding answers generated by experts is curated from rural health workers and young mothers. We develop a Hindi chatbot that identifies k relevant Question and Answer (QnA) pairs from the database in response to a healthcare query (q) written in Devnagri script or Hindi-English (Hinglish) code-mixed script. The curated database covers 80% of all the queries that a user of our study is likely to ask. We experimented with (i) rule-based methods, (ii) sentence embeddings, and (iii) a paraphrasing classifier, to calculate the q-Q similarity. We observed that paraphrasing classifier gives the best result when trained first on an open-domain text and then on the healthcare domain. Our chatbot uses an ensemble of all three approaches. We observed that if a given q can be answered using the database, then our chatbot can provide at least one relevant QnA pair among its top three suggestions for up to 70% of the queries.