[Industry] Toward More Accurate and Generalizable Evaluation Metrics for Task-Oriented Dialogs

Abishek Komma, Nagesh Panyam Chandrasekarasastry, Timothy Leffel, Anuj Goyal, Angeliki Metallinou, Spyros Matsoukas, Aram Galstyan

Industry: Industry Industry Paper

Session 5: Industry (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 16:15-17:45 (EDT) (America/Toronto)
Global Time: July 11, Session 5 (20:15-21:45 UTC)
TLDR: Measurement of interaction quality is a critical task for the improvement of large-scale spoken dialog systems. Existing approaches to dialog quality estimation either focus on evaluating the quality of individual turns, or collect dialog-level quality measurements from end users immediately followi...
You can open the #paper-I47 channel in a separate window.
Abstract: Measurement of interaction quality is a critical task for the improvement of large-scale spoken dialog systems. Existing approaches to dialog quality estimation either focus on evaluating the quality of individual turns, or collect dialog-level quality measurements from end users immediately following an interaction. In contrast to these approaches, we introduce a new dialog-level annotation workflow called Dialog Quality Annotation (DQA). DQA expert annotators evaluate the quality of dialogs as a whole, and also label dialogs for attributes such as goal completion and user sentiment. In this contribution, we show that: (i) while dialog quality cannot be completely decomposed into dialog-level attributes, there is a strong relationship between some objective dialog attributes and judgments of dialog quality; (ii) for the task of dialog-level quality estimation, a supervised model trained on dialog-level annotations outperforms methods based purely on aggregating turn-level features; and (iii) the proposed evaluation model shows better domain generalization ability compared to the baselines. On the basis of these results, we argue that having high-quality human-annotated data is an important component of evaluating interaction quality for large industrial-scale voice assistant platforms.