[Industry] PLAtE: A Large-scale Dataset for List Page Web Extraction

Aidan San, Yuan Zhuang, Jan Bakus, Colin Lockard, David Ciemiewicz, Sandeep Atluri, Kevin Small, Yangfeng Ji, Heba Elfardy

Industry: Industry Industry Paper

Session 5: Industry (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 16:15-17:45 (EDT) (America/Toronto)
Global Time: July 11, Session 5 (20:15-21:45 UTC)
TLDR: Recently, neural models have been leveraged to significantly improve the performance of information extraction from semi-structured websites. However, a barrier for continued progress is the small number of datasets large enough to train these models. In this work, we introduce the PLAtE (Pages of L...
You can open the #paper-I77 channel in a separate window.
Abstract: Recently, neural models have been leveraged to significantly improve the performance of information extraction from semi-structured websites. However, a barrier for continued progress is the small number of datasets large enough to train these models. In this work, we introduce the PLAtE (Pages of Lists Attribute Extraction) benchmark dataset as a challenging new web extraction task. PLAtE focuses on shopping data, specifically extractions from product review pages with multiple items encompassing the tasks of: (1) finding product list segmentation boundaries and (2) extracting attributes for each product. PLAtE is composed of 52,898 items collected from 6,694 pages and 156,014 attributes, making it the first large-scale list page web extraction dataset. We use a multi-stage approach to collect and annotate the dataset and adapt three state-of-the-art web extraction models to the two tasks comparing their strengths and weaknesses both quantitatively and qualitatively.