[Industry] Scalable and Safe Remediation of Defective Actions in Self-Learning Conversational Systems

Sarthak Ahuja, Mohammad Kachuee, Fatemeh Sheikholeslami, Weiqing Liu, Jaeyoung Do

Industry: Industry Industry Paper

Session 4: Industry (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
TLDR: Off-Policy reinforcement learning has been the driving force for the state-of-the-art conversational AIs leading to more natural human-agent interactions and improving the user satisfaction for goal-oriented agents. However, in large-scale commercial settings, it is often challenging to balance betw...
You can open the #paper-I96 channel in a separate window.
Abstract: Off-Policy reinforcement learning has been the driving force for the state-of-the-art conversational AIs leading to more natural human-agent interactions and improving the user satisfaction for goal-oriented agents. However, in large-scale commercial settings, it is often challenging to balance between policy improvements and experience continuity on the broad spectrum of applications handled by such system. In the literature, off-policy evaluation and guard-railing on aggregate statistics has been commonly used to address this problem. In this paper, we propose method for curating and leveraging high-precision samples sourced from historical regression incident reports to validate, safe-guard, and improve policies prior to the online deployment. We conducted extensive experiments using data from a real-world conversational system and actual regression incidents. The proposed method is currently deployed in our production system to protect customers against broken experiences and enable long-term policy improvements.