An Exploratory Study on Model Compression for Text-to-SQL
Shuo Sun, Yuze Gao, Yuchen Zhang, Jian Su, Bin Chen, Yingzhan Lin, Shuqi Sun
Findings: Theme: Reality Check Findings Paper
Session 1: Theme: Reality Check (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Spotlight Session: Spotlight - Metropolitan West (Spotlight)
Conference Room: Metropolitan West
Conference Time: July 10, 19:00-21:00 (EDT) (America/Toronto)
Global Time: July 10, Spotlight Session (23:00-01:00 UTC)
Keywords:
lessons from deployment
TLDR:
Text-to-SQL translates user queries into SQL statements that can retrieve relevant answers from relational databases. Recent approaches to Text-to-SQL rely on pre-trained language models that are computationally expensive and technically challenging to deploy in real-world applications that require ...
You can open the
#paper-P1040
channel in a separate window.
Abstract:
Text-to-SQL translates user queries into SQL statements that can retrieve relevant answers from relational databases. Recent approaches to Text-to-SQL rely on pre-trained language models that are computationally expensive and technically challenging to deploy in real-world applications that require real-time or on-device processing capabilities. In this paper, we perform a focused study on the feasibility of applying recent model compression techniques to sketch-based and sequence-to-sequence Text-to-SQL models. Our results reveal that sketch-based Text-to-SQL models generally have higher inference efficiency and respond better to model compression than sequence-to-sequence models, making them ideal for real-world deployments, especially in use cases with simple SQL statements.