Peer-Label Assisted Hierarchical Text Classification
Junru Song, Feifei Wang, Yang Yang
Main: Machine Learning for NLP Main-poster Paper
Session 7: Machine Learning for NLP (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Session 7 (15:00-16:30 UTC)
Keywords:
knowledge-augmented methods
TLDR:
Hierarchical text classification (HTC) is a challenging task, in which the labels of texts can be organized into a category hierarchy. To deal with the HTC problem, many existing works focus on utilizing the parent-child relationships that are explicitly shown in the hierarchy. However, texts with a...
You can open the
#paper-P1166
channel in a separate window.
Abstract:
Hierarchical text classification (HTC) is a challenging task, in which the labels of texts can be organized into a category hierarchy. To deal with the HTC problem, many existing works focus on utilizing the parent-child relationships that are explicitly shown in the hierarchy. However, texts with a category hierarchy also have some latent relevancy among labels in the same level of the hierarchy. We refer to these labels as peer labels, from which the peer effects are originally utilized in our work to improve the classification performance. To fully explore the peer-label relationship, we develop a PeerHTC method. This method innovatively measures the latent relevancy of peer labels through several metrics and then encodes the relevancy with a Graph Convolutional Neural Network. We also propose a sample importance learning method to ameliorate the side effects raised by modelling the peer label relevancy. Our experiments on several standard datasets demonstrate the evidence of peer labels and the superiority of PeerHTC over other state-of-the-art HTC methods in terms of classification accuracy.