Cross-lingual Science Journalism: Select, Simplify and Rewrite Summaries for Non-expert Readers
Mehwish Fatima, Michael Strube
Main: NLP Applications Main-poster Paper
Session 1: NLP Applications (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Keywords:
educational applications, gec, essay scoring
Languages:
german
TLDR:
Automating Cross-lingual Science Journalism (CSJ) aims to generate popular science summaries from English scientific texts for non-expert readers in their local language. We introduce CSJ as a downstream task of text simplification and cross-lingual scientific summarization to facilitate science jou...
You can open the
#paper-P1180
channel in a separate window.
Abstract:
Automating Cross-lingual Science Journalism (CSJ) aims to generate popular science summaries from English scientific texts for non-expert readers in their local language. We introduce CSJ as a downstream task of text simplification and cross-lingual scientific summarization to facilitate science journalists' work. We analyze the performance of possible existing solutions as baselines for the CSJ task. Based on these findings, we propose to combine the three components - SELECT, SIMPLIFY and REWRITE (SSR) to produce cross-lingual simplified science summaries for non-expert readers. Our empirical evaluation on the Wikipedia dataset shows that SSR significantly outperforms the baselines for the CSJ task and can serve as a strong baseline for future work. We also perform an ablation study investigating the impact of individual components of SSR. Further, we analyze the performance of SSR on a high-quality, real-world CSJ dataset with human evaluation and in-depth analysis, demonstrating the superior performance of SSR for CSJ.