A Compare-and-contrast Multistage Pipeline for Uncovering Financial Signals in Financial Reports
Jia-Huei Ju, Yu-Shiang Huang, Cheng-Wei Lin, Che Lin, Chuan-Ju Wang
Main: NLP Applications Main-poster Paper
Poster Session 7: NLP Applications (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Poster Session 7 (15:00-16:30 UTC)
Keywords:
financial/business nlp
TLDR:
In this paper, we address the challenge of discovering financial signals in narrative financial reports. As these documents are often lengthy and tend to blend routine information with new information, it is challenging for professionals to discern critical financial signals. To this end, we leverag...
You can open the
#paper-P1388
channel in a separate window.
Abstract:
In this paper, we address the challenge of discovering financial signals in narrative financial reports. As these documents are often lengthy and tend to blend routine information with new information, it is challenging for professionals to discern critical financial signals. To this end, we leverage the inherent nature of the year-to-year structure of reports to define a novel signal-highlighting task; more importantly, we propose a compare-and-contrast multistage pipeline that recognizes different relationships between the reports and locates relevant rationales for these relationships. We also create and publicly release a human-annotated dataset for our task. Our experiments on the dataset validate the effectiveness of our pipeline, and we provide detailed analyses and ablation studies to support our findings.