How Do In-Context Examples Affect Compositional Generalization?

Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang LOU, Dongmei Zhang

Main: Large Language Models Main-poster Paper

Session 7: Large Language Models (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Session 7 (15:00-16:30 UTC)
Keywords: prompting, interpretability/analysis
TLDR: Compositional generalization--understanding unseen combinations of seen primitives--is an essential reasoning capability in human intelligence. The AI community mainly studies this capability by fine-tuning neural networks on lots of training samples, while it is still unclear whether and how in-con...
You can open the #paper-P1430 channel in a separate window.
Abstract: Compositional generalization--understanding unseen combinations of seen primitives--is an essential reasoning capability in human intelligence. The AI community mainly studies this capability by fine-tuning neural networks on lots of training samples, while it is still unclear whether and how in-context learning--the prevailing few-shot paradigm based on large language models--exhibits compositional generalization. In this paper, we present CoFe, a test suite to investigate in-context compositional generalization. We find that the compositional generalization performance can be easily affected by the selection of in-context examples, thus raising the research question what the key factors are to make good in-context examples for compositional generalization. We study three potential factors: similarity, diversity and complexity. Our systematic experiments indicate that in-context examples should be structurally similar to the test case, diverse from each other, and individually simple. Furthermore, two strong limitations are observed: in-context compositional generalization on fictional words is much weaker than that on commonly used ones; it is still critical that the in-context examples should cover required linguistic structures, even though the backbone model has been pre-trained on large corpus. We hope our analysis would facilitate the understanding and utilization of in-context learning paradigm.