Improving Translation Quality Estimation with Bias Mitigation
Hui Huang, Shuangzhi Wu, Kehai Chen, Hui Di, Muyun Yang, Tiejun Zhao
Main: Machine Translation Main-oral Paper
Session 6: Machine Translation (Oral)
Conference Room: Metropolitan West
Conference Time: July 12, 09:15-10:30 (EDT) (America/Toronto)
Global Time: July 12, Session 6 (13:15-14:30 UTC)
Keywords:
automatic evaluation
TLDR:
State-of-the-art translation Quality Estimation (QE) models are proven to be biased. More specifically, they over-rely on monolingual features while ignoring the bilingual semantic alignment. In this work, we propose a novel method to mitigate the bias of the QE model and improve estimation performa...
You can open the
#paper-P1433
channel in a separate window.
Abstract:
State-of-the-art translation Quality Estimation (QE) models are proven to be biased. More specifically, they over-rely on monolingual features while ignoring the bilingual semantic alignment. In this work, we propose a novel method to mitigate the bias of the QE model and improve estimation performance. Our method is based on the contrastive learning between clean and noisy sentence pairs. We first introduce noise to the target side of the parallel sentence pair, forming the negative samples. With the original parallel pairs as the positive sample, the QE model is contrastively trained to distinguish the positive samples from the negative ones. This objective is jointly trained with the regression-style quality estimation, so as to prevent the QE model from overfitting to monolingual features. Experiments on WMT QE evaluation datasets demonstrate that our method improves the estimation performance by a large margin while mitigating the bias.