Continual Contrastive Finetuning Improves Low-Resource Relation Extraction
Wenxuan Zhou, Sheng Zhang, Tristan Naumann, Muhao Chen, Hoifung Poon
Main: Information Extraction Main-poster Paper
Poster Session 1: Information Extraction (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 1 (15:00-16:30 UTC)
Keywords:
document-level extraction
TLDR:
Relation extraction (RE), which has relied on structurally annotated corpora for model training, has been particularly challenging in low-resource scenarios and domains. Recent literature has tackled low-resource RE by self-supervised learning, where the solution involves pretraining the entity pair...
You can open the
#paper-P1476
channel in a separate window.
Abstract:
Relation extraction (RE), which has relied on structurally annotated corpora for model training, has been particularly challenging in low-resource scenarios and domains. Recent literature has tackled low-resource RE by self-supervised learning, where the solution involves pretraining the entity pair embedding by RE-based objective and finetuning on labeled data by classification-based objective. However, a critical challenge to this approach is the gap in objectives, which prevents the RE model from fully utilizing the knowledge in pretrained representations. In this paper, we aim at bridging the gap and propose to pretrain and finetune the RE model using consistent objectives of contrastive learning. Since in this kind of representation learning paradigm, one relation may easily form multiple clusters in the representation space, we further propose a multi-center contrastive loss that allows one relation to form multiple clusters to better align with pretraining. Experiments on two document-level RE datasets, BioRED and Re-DocRED, demonstrate the effectiveness of our method. Particularly, when using 1\% end-task training data, our method outperforms PLM-based RE classifier by 10.5\% and 6.1\% on the two datasets, respectively.