UniEX: An Effective and Efficient Framework for Unified Information Extraction via a Span-extractive Perspective
yang ping, JunYu Lu, ruyi gan, Junjie Wang, Yuxiang Zhang, Pingjian Zhang, Jiaxing Zhang
Main: Information Extraction Main-poster Paper
Session 1: Information Extraction (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Keywords:
open information extraction
TLDR:
We propose a new paradigm for universal information extraction (IE) that is compatible with any schema format and applicable to a list of IE tasks, such as named entity recognition, relation extraction, event extraction and sentiment analysis. Our approach converts the text-based IE tasks as the tok...
You can open the
#paper-P1541
channel in a separate window.
Abstract:
We propose a new paradigm for universal information extraction (IE) that is compatible with any schema format and applicable to a list of IE tasks, such as named entity recognition, relation extraction, event extraction and sentiment analysis. Our approach converts the text-based IE tasks as the token-pair problem, which uniformly disassembles all extraction targets into joint span detection, classification and association problems with a unified extractive framework, namely UniEX. UniEX can synchronously encode schema-based prompt and textual information, and collaboratively learn the generalized knowledge from pre-defined information using the auto-encoder language models. We develop a traffine attention mechanism to integrate heterogeneous factors including tasks, labels and inside tokens, and obtain the extraction target via a scoring matrix. Experiment results show that UniEX can outperform generative universal IE models in terms of performance and inference-speed on $14$ benchmarks IE datasets with the supervised setting. The state-of-the-art performance in low-resource scenarios also verifies the transferability and effectiveness of UniEX.