Facilitating Fine-grained Detection of Chinese Toxic Language: Hierarchical Taxonomy, Resources, and Benchmarks

Junyu Lu, Bo Xu, Xiaokun Zhang, Changrong Min, Liang Yang, Hongfei LIN

Main: Resources and Evaluation Main-poster Paper

Poster Session 4: Resources and Evaluation (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 4 (15:00-16:30 UTC)
Keywords: language resources
Languages: simplified chinese
TLDR: The widespread dissemination of toxic online posts is increasingly damaging to society. However, research on detecting toxic language in Chinese has lagged significantly due to limited datasets. Existing datasets suffer from a lack of fine-grained annotations, such as the toxic type and expressions ...
You can open the #paper-P1569 channel in a separate window.
Abstract: The widespread dissemination of toxic online posts is increasingly damaging to society. However, research on detecting toxic language in Chinese has lagged significantly due to limited datasets. Existing datasets suffer from a lack of fine-grained annotations, such as the toxic type and expressions with indirect toxicity. These fine-grained annotations are crucial factors for accurately detecting the toxicity of posts involved with lexical knowledge, which has been a challenge for researchers. To tackle this problem, we facilitate the fine-grained detection of Chinese toxic language by building a new dataset with benchmark results. First, we devised Monitor Toxic Frame, a hierarchical taxonomy to analyze the toxic type and expressions. Then, we built a fine-grained dataset ToxiCN, including both direct and indirect toxic samples. ToxiCN is based on an insulting vocabulary containing implicit profanity. We further propose a benchmark model, Toxic Knowledge Enhancement (TKE), by incorporating lexical features to detect toxic language. We demonstrate the usability of ToxiCN and the effectiveness of TKE based on a systematic quantitative and qualitative analysis.