A Class-Rebalancing Self-Training Framework for Distantly-Supervised Named Entity Recognition

Qi Li, Tingyu Xie, Peng Peng, Hongwei Wang, Gaoang Wang

Findings: Information Extraction Findings Paper

Session 1: Information Extraction (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Keywords: named entity recognition and relation extraction
TLDR: Distant supervision reduces the reliance on human annotation in the named entity recognition tasks. The class-level imbalanced distant annotation is a realistic and unexplored problem, and the popular method of self-training can not handle class-level imbalanced learning. More importantly, self-trai...
You can open the #paper-P176 channel in a separate window.
Abstract: Distant supervision reduces the reliance on human annotation in the named entity recognition tasks. The class-level imbalanced distant annotation is a realistic and unexplored problem, and the popular method of self-training can not handle class-level imbalanced learning. More importantly, self-training is dominated by the high-performance class in selecting candidates, and deteriorates the low-performance class with the bias of generated pseudo label. To address the class-level imbalance performance, we propose a class-rebalancing self-training framework for improving the distantly-supervised named entity recognition. In candidate selection, a class-wise flexible threshold is designed to fully explore other classes besides the high-performance class. In label generation, injecting the distant label, a hybrid pseudo label is adopted to provide straight semantic information for the low-performance class. Experiments on five flat and two nested datasets show that our model achieves state-of-the-art results. We also conduct extensive research to analyze the effectiveness of the flexible threshold and the hybrid pseudo label.