Parameter-Efficient Fine-Tuning without Introducing New Latency

Baohao Liao, Yan Meng, Christof Monz

Main: Machine Learning for NLP Main-poster Paper

Poster Session 3: Machine Learning for NLP (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 3 (13:00-14:30 UTC)
Keywords: transfer learning / domain adaptation, parameter-efficient finetuning
TLDR: Parameter-efficient fine-tuning (PEFT) of pre-trained language models has recently demonstrated remarkable achievements, effectively matching the performance of full fine-tuning while utilizing significantly fewer trainable parameters, and consequently addressing the storage and communication constr...
You can open the #paper-P1817 channel in a separate window.
Abstract: Parameter-efficient fine-tuning (PEFT) of pre-trained language models has recently demonstrated remarkable achievements, effectively matching the performance of full fine-tuning while utilizing significantly fewer trainable parameters, and consequently addressing the storage and communication constraints. Nonetheless, various PEFT methods are limited by their inherent characteristics. In the case of sparse fine-tuning, which involves modifying only a small subset of the existing parameters, the selection of fine-tuned parameters is task- and domain-specific, making it unsuitable for federated learning. On the other hand, PEFT methods with adding new parameters typically introduce additional inference latency. In this paper, we demonstrate the feasibility of generating a sparse mask in a task-agnostic manner, wherein all downstream tasks share a common mask. Our approach, which relies solely on the magnitude information of pre-trained parameters, surpasses existing methodologies by a significant margin when evaluated on the GLUE benchmark. Additionally, we introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation, thereby achieving identical inference speed to that of full fine-tuning. Through extensive experiments, our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03\% parameters of full fine-tuning.