Pre-Training to Learn in Context
Yuxian Gu, Li Dong, Furu Wei, Minlie Huang
Main: Large Language Models Main-oral Paper
Session 3: Large Language Models (Oral)
Conference Room: Metropolitan Centre
Conference Time: July 11, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 11, Session 3 (13:00-14:30 UTC)
Keywords:
pre-training, prompting
TLDR:
In-context learning, where pre-trained language models learn to perform tasks from task examples and instructions in their contexts, has attracted much attention in the NLP community. However, the ability of in-context learning is not fully exploited because language models are not explicitly traine...
You can open the
#paper-P1924
channel in a separate window.
Abstract:
In-context learning, where pre-trained language models learn to perform tasks from task examples and instructions in their contexts, has attracted much attention in the NLP community. However, the ability of in-context learning is not fully exploited because language models are not explicitly trained to learn in context. To this end, we propose PICL (Pre-training for In-Context Learning), a framework to enhance the language models' in-context learning ability by pre-training the model on a large collection of "intrinsic tasks" in the general plain-text corpus using the simple language modeling objective. PICL encourages the model to infer and perform tasks by conditioning on the contexts while maintaining task generalization of pre-trained models. We evaluate the in-context learning performance of the model trained with PICL on seven widely-used text classification datasets and the Super-NaturalInstrctions benchmark, which contains 100+ NLP tasks formulated to text generation. Our experiments show that PICL is more effective and task-generalizable than a range of baselines, outperforming larger language models with nearly 4x parameters. The code is publicly available at https://github.com/thu-coai/PICL.