Efficient Document Embeddings via Self-Contrastive Bregman Divergence Learning

Daniel Saggau, Mina Rezaei, Bernd Bischl, Ilias Chalkidis

Findings: Machine Learning for NLP Findings Paper

Session 7: Machine Learning for NLP (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Session 7 (15:00-16:30 UTC)
Keywords: contrastive learning
TLDR: Learning quality document embeddings is a fundamental problem in natural language processing (NLP), information retrieval (IR), recommendation systems, and search engines. Despite recent advances in the development of transformer-based models that produce sentence embeddings with self-contrastive le...
You can open the #paper-P2080 channel in a separate window.
Abstract: Learning quality document embeddings is a fundamental problem in natural language processing (NLP), information retrieval (IR), recommendation systems, and search engines. Despite recent advances in the development of transformer-based models that produce sentence embeddings with self-contrastive learning, the encoding of long documents (Ks of words) is still challenging with respect to both efficiency and quality considerations. Therefore, we train Longfomer-based document encoders using a state-of-the-art unsupervised contrastive learning method (SimCSE). Further on, we complement the baseline method -siamese neural network- with additional convex neural networks based on functional Bregman divergence aiming to enhance the quality of the output document representations. We show that overall the combination of a self-contrastive siamese network and our proposed neural Bregman network outperforms the baselines in two linear classification settings on three long document topic classification tasks from the legal and biomedical domains.