Exploiting Biased Models to De-bias Text: A Gender-Fair Rewriting Model
Chantal Amrhein, Florian Schottmann, Rico Sennrich, Samuel Läubli
Main: Ethics and NLP Main-poster Paper
Poster Session 7: Ethics and NLP (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Poster Session 7 (15:00-16:30 UTC)
Keywords:
model bias/unfairness mitigation
Languages:
german
TLDR:
Natural language generation models reproduce and often amplify the biases present in their training data. Previous research explored using sequence-to-sequence rewriting models to transform biased model outputs (or original texts) into more gender-fair language by creating pseudo training data throu...
You can open the
#paper-P2153
channel in a separate window.
Abstract:
Natural language generation models reproduce and often amplify the biases present in their training data. Previous research explored using sequence-to-sequence rewriting models to transform biased model outputs (or original texts) into more gender-fair language by creating pseudo training data through linguistic rules. However, this approach is not practical for languages with more complex morphology than English. We hypothesise that creating training data in the reverse direction, i.e. starting from gender-fair text, is easier for morphologically complex languages and show that it matches the performance of state-of-the-art rewriting models for English. To eliminate the rule-based nature of data creation, we instead propose using machine translation models to create gender-biased text from real gender-fair text via round-trip translation. Our approach allows us to train a rewriting model for German without the need for elaborate handcrafted rules. The outputs of this model increased gender-fairness as shown in a human evaluation study.