Do Models Really Learn to Follow Instructions? An Empirical Study of Instruction Tuning
Po-Nien Kung, Nanyun Peng
Main: Large Language Models Main-poster Paper
Poster Session 2: Large Language Models (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 14:00-15:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 2 (18:00-19:30 UTC)
Keywords:
interpretability/analysis
TLDR:
Recent works on instruction tuning (IT) have achieved great performance with zero-shot generalizability to unseen tasks. With additional context (e.g., task definition, examples) provided to models for fine-tuning, they achieved much higher performance than untuned models. Despite impressive perform...
You can open the
#paper-P2358
channel in a separate window.
Abstract:
Recent works on instruction tuning (IT) have achieved great performance with zero-shot generalizability to unseen tasks. With additional context (e.g., task definition, examples) provided to models for fine-tuning, they achieved much higher performance than untuned models. Despite impressive performance gains, what models learn from IT remains understudied. In this work, we analyze how models utilize instructions during IT by comparing model training with altered vs. original instructions. Specifically, we create simplified task definitions by removing all semantic components and only leaving the output space information, and delusive examples that contain incorrect input-output mapping. Our experiments show that models trained on simplified task definition or delusive examples can achieve comparable performance to the ones trained on the original instructions and examples. Furthermore, we introduce a random baseline to perform zeroshot classification tasks, and find it achieves similar performance (42.6\% exact-match) as IT does (43\% exact-match) in low resource setting, while both methods outperform naive T5 significantly (30\% per exact-match). Our analysis provides evidence that the impressive performance gain of current IT models can come from picking up superficial patterns, such as learning the output format and guessing. Our study highlights the urgent need for more reliable IT methods and evaluation.