Neural Machine Translation Methods for Translating Text to Sign Language Glosses
Dele Zhu, Vera Czehmann, Eleftherios Avramidis
Main: Machine Translation Main-poster Paper
Session 4: Machine Translation (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Keywords:
multilingual mt, multimodality
Languages:
german
TLDR:
State-of-the-art techniques common to low resource Machine Translation (MT) are applied to improve MT of spoken language text to Sign Language (SL) glosses. In our experiments, we improve the performance of the transformer-based models via (1) data augmentation, (2) semi-supervised Neural Machine Tr...
You can open the
#paper-P2439
channel in a separate window.
Abstract:
State-of-the-art techniques common to low resource Machine Translation (MT) are applied to improve MT of spoken language text to Sign Language (SL) glosses. In our experiments, we improve the performance of the transformer-based models via (1) data augmentation, (2) semi-supervised Neural Machine Translation (NMT), (3) transfer learning and (4) multilingual NMT. The proposed methods are implemented progressively on two German SL corpora containing gloss annotations. Multilingual NMT combined with data augmentation appear to be the most successful setting, yielding statistically significant improvements as measured by three automatic metrics (up to over 6 points BLEU), and confirmed via human evaluation. Our best setting outperforms all previous work that report on the same test-set and is also confirmed on a corpus of the American Sign Language (ASL).