Character-Aware Models Improve Visual Text Rendering

Rosanne Liu, Dan Garrette, Chitwan Saharia, William Chan, Adam Roberts, Sharan Narang, Irina Blok, RJ Mical, Mohammad Norouzi, Noah Constant

Main: Language Grounding to Vision, Robotics, and Beyond Main-poster Paper

Poster Session 3: Language Grounding to Vision, Robotics, and Beyond (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 3 (13:00-14:30 UTC)
Keywords: cross-modal pretraining, cross-modal content generation, cross-modal application
TLDR: Current image generation models struggle to reliably produce well-formed visual text. In this paper, we investigate a key contributing factor: popular text-to-image models lack character-level input features, making it much harder to predict a word's visual makeup as a series of glyphs. To quantify ...
You can open the #paper-P249 channel in a separate window.
Abstract: Current image generation models struggle to reliably produce well-formed visual text. In this paper, we investigate a key contributing factor: popular text-to-image models lack character-level input features, making it much harder to predict a word's visual makeup as a series of glyphs. To quantify this effect, we conduct a series of experiments comparing character-aware vs. character-blind text encoders. In the text-only domain, we find that character-aware models provide large gains on a novel spelling task (WikiSpell). Applying our learnings to the visual domain, we train a suite of image generation models, and show that character-aware variants outperform their character-blind counterparts across a range of novel text rendering tasks (our DrawText benchmark). Our models set a much higher state-of-the-art on visual spelling, with 30+ point accuracy gains over competitors on rare words, despite training on far fewer examples.