CREPE: Open-Domain Question Answering with False Presuppositions

Xinyan Velocity Yu, Sewon Min, Luke Zettlemoyer, Hannaneh Hajishirzi

Main: Resources and Evaluation Main-oral Paper

Session 4: Resources and Evaluation (Oral)
Conference Room: Metropolitan East
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Keywords: nlp datasets
TLDR: When asking about unfamiliar topics, information seeking users often pose questions with false presuppositions. Most existing question answering (QA) datasets, in contrast, assume all questions have well defined answers. We introduce CREPE, a QA dataset containing a natural distribution of presuppos...
You can open the #paper-P2678 channel in a separate window.
Abstract: When asking about unfamiliar topics, information seeking users often pose questions with false presuppositions. Most existing question answering (QA) datasets, in contrast, assume all questions have well defined answers. We introduce CREPE, a QA dataset containing a natural distribution of presupposition failures from online information-seeking forums. We find that 25\% of questions contain false presuppositions, and provide annotations for these presuppositions and their corrections. Through extensive baseline experiments, we show that adaptations of existing open-domain QA models can find presuppositions moderately well, but struggle when predicting whether a presupposition is factually correct. This is in large part due to difficulty in retrieving relevant evidence passages from a large text corpus. CREPE provides a benchmark to study question answering in the wild, and our analyses provide avenues for future work in better modeling and further studying the task.