Characterizing and Measuring Linguistic Dataset Drift
Tyler A Chang, Kishaloy Halder, Neha Anna John, Yogarshi Vyas, Yassine Benajiba, Miguel Ballesteros, Dan Roth
Main: Machine Learning for NLP Main-poster Paper
Poster Session 6: Machine Learning for NLP (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 12, Poster Session 6 (13:00-14:30 UTC)
Keywords:
transfer learning / domain adaptation
TLDR:
NLP models often degrade in performance when real world data distributions differ markedly from training data. However, existing dataset drift metrics in NLP have generally not considered specific dimensions of linguistic drift that affect model performance, and they have not been validated in their...
You can open the
#paper-P2755
channel in a separate window.
Abstract:
NLP models often degrade in performance when real world data distributions differ markedly from training data. However, existing dataset drift metrics in NLP have generally not considered specific dimensions of linguistic drift that affect model performance, and they have not been validated in their ability to predict model performance at the individual example level, where such metrics are often used in practice. In this paper, we propose three dimensions of linguistic dataset drift: vocabulary, structural, and semantic drift. These dimensions correspond to content word frequency divergences, syntactic divergences, and meaning changes not captured by word frequencies (e.g. lexical semantic change). We propose interpretable metrics for all three drift dimensions, and we modify past performance prediction methods to predict model performance at both the example and dataset level for English sentiment classification and natural language inference. We find that our drift metrics are more effective than previous metrics at predicting out-of-domain model accuracies (mean 16.8\% root mean square error decrease), particularly when compared to popular fine-tuned embedding distances (mean 47.7\% error decrease). Fine-tuned embedding distances are much more effective at ranking individual examples by expected performance, but decomposing into vocabulary, structural, and semantic drift produces the best example rankings of all considered model-agnostic drift metrics (mean 6.7\% ROC AUC increase).