ExplainMeetSum: A Dataset for Explainable Meeting Summarization Aligned with Human Intent
Hyun Kim, Minsoo Cho, Seung-Hoon Na
Main: Summarization Main-poster Paper
Poster Session 4: Summarization (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 4 (15:00-16:30 UTC)
Keywords:
query-focused summarization
TLDR:
To enhance the explainability of meeting summarization, we construct a new dataset called "ExplainMeetSum," an augmented version of QMSum, by newly annotating evidence sentences that faithfully "explain" a summary. Using ExplainMeetSum, we propose a novel multiple extractor guided summarization, nam...
You can open the
#paper-P2774
channel in a separate window.
Abstract:
To enhance the explainability of meeting summarization, we construct a new dataset called "ExplainMeetSum," an augmented version of QMSum, by newly annotating evidence sentences that faithfully "explain" a summary. Using ExplainMeetSum, we propose a novel multiple extractor guided summarization, namely Multi-DYLE, which extensively generalizes DYLE to enable using a supervised extractor based on human-aligned extractive oracles. We further present an explainability-aware task, named "Explainable Evidence Extraction" (E3), which aims to automatically detect all evidence sentences that support a given summary. Experimental results on the QMSum dataset show that the proposed Multi-DYLE outperforms DYLE with gains of up to 3.13 in the ROUGE-1 score. We further present the initial results on the E3 task, under the settings using separate and joint evaluation metrics.