Shielded Representations: Protecting Sensitive Attributes Through Iterative Gradient-Based Projection
Shadi Iskander, Kira Radinsky, Yonatan Belinkov
Findings: Ethics and NLP Findings Paper
Session 7: Ethics and NLP (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 12, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 12, Session 7 (15:00-16:30 UTC)
Spotlight Session: Spotlight - Metropolitan West (Spotlight)
Conference Room: Metropolitan West
Conference Time: July 10, 19:00-21:00 (EDT) (America/Toronto)
Global Time: July 10, Spotlight Session (23:00-01:00 UTC)
Keywords:
model bias/unfairness mitigation
TLDR:
Natural language processing models tend to learn and encode social biases present in the data. One popular approach for addressing such biases is to eliminate encoded information from the model's representations. However, current methods are restricted to removing only linearly encoded information.
...
You can open the
#paper-P2788
channel in a separate window.
Abstract:
Natural language processing models tend to learn and encode social biases present in the data. One popular approach for addressing such biases is to eliminate encoded information from the model's representations. However, current methods are restricted to removing only linearly encoded information.
In this work, we propose Iterative Gradient-Based Projection (IGBP), a novel method for removing non-linear encoded concepts from neural representations. Our method consists of iteratively training neural classifiers to predict a particular attribute we seek to eliminate, followed by a projection of the representation on a hypersurface, such that the classifiers become oblivious to the target attribute. We evaluate the effectiveness of our method on the task of removing gender and race information as sensitive attributes. Our results demonstrate that IGBP is effective in mitigating bias through intrinsic and extrinsic evaluations, with minimal impact on downstream task accuracy.