AtTGen: Attribute Tree Generation for Real-World Attribute Joint Extraction
Yanzeng Li, Bingcong Xue, Ruoyu Zhang, Lei Zou
Main: NLP Applications Main-poster Paper
Session 4: NLP Applications (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Keywords:
financial/business nlp, knowledge graphs
TLDR:
Attribute extraction aims to identify attribute names and the corresponding values from descriptive texts, which is the foundation for extensive downstream applications such as knowledge graph construction, search engines, and e-Commerce. In previous studies, attribute extraction is generally treate...
You can open the
#paper-P2868
channel in a separate window.
Abstract:
Attribute extraction aims to identify attribute names and the corresponding values from descriptive texts, which is the foundation for extensive downstream applications such as knowledge graph construction, search engines, and e-Commerce. In previous studies, attribute extraction is generally treated as a classification problem for predicting attribute types or a sequence tagging problem for labeling attribute values, where two paradigms, i.e., closed-world and open-world assumption, are involved. However, both of these paradigms have limitations in terms of real-world applications. And prior studies attempting to integrate these paradigms through ensemble, pipeline, and co-training models, still face challenges like cascading errors, high computational overhead, and difficulty in training. To address these existing problems, this paper presents Attribute Tree, a unified formulation for real-world attribute extraction application, where closed-world, open-world, and semi-open attribute extraction tasks are modeled uniformly. Then a text-to-tree generation model, AtTGen, is proposed to learn annotations from different scenarios efficiently and consistently. Experiments demonstrate that our proposed paradigm well covers various scenarios for real-world applications, and the model achieves state-of-the-art, outperforming existing methods by a large margin on three datasets. Our code, pretrained model, and datasets are available at https://github.com/lsvih/AtTGen.