TECHS: Temporal Logical Graph Networks for Explainable Extrapolation Reasoning

Qika Lin, Jun Liu, Rui Mao, Fangzhi Xu, Erik Cambria

Main: NLP Applications Main-poster Paper

Session 1: NLP Applications (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Keywords: knowledge graphs
TLDR: Extrapolation reasoning on temporal knowledge graphs (TKGs) aims to forecast future facts based on past counterparts. There are two main challenges: (1) incorporating the complex information, including structural dependencies, temporal dynamics, and hidden logical rules; (2) implementing differentia...
You can open the #paper-P299 channel in a separate window.
Abstract: Extrapolation reasoning on temporal knowledge graphs (TKGs) aims to forecast future facts based on past counterparts. There are two main challenges: (1) incorporating the complex information, including structural dependencies, temporal dynamics, and hidden logical rules; (2) implementing differentiable logical rule learning and reasoning for explainability. To this end, we propose an explainable extrapolation reasoning framework TEemporal logiCal grapH networkS (TECHS), which mainly contains a temporal graph encoder and a logical decoder. The former employs a graph convolutional network with temporal encoding and heterogeneous attention to embed topological structures and temporal dynamics. The latter integrates propositional reasoning and first-order reasoning by introducing a reasoning graph that iteratively expands to find the answer. A forward message-passing mechanism is also proposed to update node representations, and their propositional and first-order attention scores. Experimental results demonstrate that it outperforms state-of-the-art baselines.