Weakly Supervised Vision-and-Language Pre-training with Relative Representations
Chi Chen, Peng Li, Maosong Sun, Yang Liu
Main: Language Grounding to Vision, Robotics, and Beyond Main-poster Paper
Poster Session 6: Language Grounding to Vision, Robotics, and Beyond (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 12, Poster Session 6 (13:00-14:30 UTC)
Keywords:
cross-modal pretraining
TLDR:
Weakly supervised vision-and-language pre-training (WVLP), which learns cross-modal representations with limited cross-modal supervision, has been shown to effectively reduce the data cost of pre-training while maintaining decent performance on downstream tasks.
However, current WVLP methods use on...
You can open the
#paper-P3109
channel in a separate window.
Abstract:
Weakly supervised vision-and-language pre-training (WVLP), which learns cross-modal representations with limited cross-modal supervision, has been shown to effectively reduce the data cost of pre-training while maintaining decent performance on downstream tasks.
However, current WVLP methods use only local descriptions of images, i.e., object tags, as cross-modal anchors to construct weakly-aligned image-text pairs for pre-training. This affects the data quality and thus the effectiveness of pre-training.
In this paper, we propose to directly take a small number of aligned image-text pairs as anchors, and represent each unaligned image and text by its similarities to these anchors, i.e., relative representations. We build a WVLP framework based on the relative representations, namely RELIT, which collects high-quality weakly-aligned image-text pairs from large-scale image-only and text-only data for pre-training through relative representation-based retrieval and generation. Experiments on four downstream tasks show that RELIT achieves new state-of-the-art results under the weakly supervised setting.