IDRISI-RA: The First Arabic Location Mention Recognition Dataset of Disaster Tweets
Reem Suwaileh, Muhammad Imran, Tamer Elsayed
Main: Resources and Evaluation Main-poster Paper
Poster Session 2: Resources and Evaluation (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 14:00-15:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 2 (18:00-19:30 UTC)
Keywords:
corpus creation, benchmarking, language resources, automatic creation and evaluation of language resources, nlp datasets, datasets for low resource languages
Languages:
arabic
TLDR:
Extracting geolocation information from social media data enables effective disaster management, as it helps response authorities; for example, in locating incidents for planning rescue activities, and affected people for evacuation. Nevertheless, geolocation extraction is greatly understudied for t...
You can open the
#paper-P322
channel in a separate window.
Abstract:
Extracting geolocation information from social media data enables effective disaster management, as it helps response authorities; for example, in locating incidents for planning rescue activities, and affected people for evacuation. Nevertheless, geolocation extraction is greatly understudied for the low resource languages such as Arabic. To fill this gap, we introduce IDRISI-RA, the first publicly-available Arabic Location Mention Recognition (LMR) dataset that provides human- and automatically-labeled versions in order of thousands and millions of tweets, respectively. It contains both location mentions and their types (e.g., district, city). Our extensive analysis shows the decent geographical, domain, location granularity, temporal, and dialectical coverage of IDRISI-RA. Furthermore, we establish baselines using the standard Arabic NER models and build two simple, yet effective, LMR models. Our rigorous experiments confirm the need for developing specific models for Arabic LMR in the disaster domain. Moreover, experiments show the promising domain and geographical generalizability of IDRISI-RA under zero-shot learning.