HeGeL: A Novel Dataset for Geo-Location from Hebrew Text
Tzuf Paz-Argaman, Tal Bauman, Itai Mondshine, Itzhak Omer, Sagi Dalyot, Reut Tsarfaty
Findings: Resources and Evaluation Findings Paper
Session 4: Resources and Evaluation (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Spotlight Session: Spotlight - Metropolitan East (Spotlight)
Conference Room: Metropolitan East
Conference Time: July 10, 19:00-21:00 (EDT) (America/Toronto)
Global Time: July 10, Spotlight Session (23:00-01:00 UTC)
Keywords:
corpus creation, language resources, nlp datasets, datasets for low resource languages
Languages:
hebrew
TLDR:
The task of textual geolocation — retrieving the coordinates of a place based on a free-form language description — calls for not only grounding but also natural language understanding and geospatial reasoning. Even though there are quite a few datasets in English used for geolocation, they are curr...
You can open the
#paper-P3371
channel in a separate window.
Abstract:
The task of textual geolocation — retrieving the coordinates of a place based on a free-form language description — calls for not only grounding but also natural language understanding and geospatial reasoning. Even though there are quite a few datasets in English used for geolocation, they are currently based on open-source data (Wikipedia and Twitter), where the location of the described place is mostly implicit, such that the location retrieval resolution is limited. Furthermore, there are no datasets available for addressing the problem of textual geolocation in morphologically rich and resource-poor languages, such as Hebrew. In this paper, we present the Hebrew Geo-Location (HeGeL) corpus, designed to collect literal place descriptions and analyze lingual geospatial reasoning. We crowdsourced 5,649 literal Hebrew place descriptions of various place types in three cities in Israel. Qualitative and empirical analysis show that the data exhibits abundant use of geospatial reasoning and requires a novel environmental representation.