A Holistic Approach to Reference-Free Evaluation of Machine Translation
Hanming Wu, Wenjuan Han, Hui Di, Yufeng Chen, Jinan Xu
Main: Machine Translation Main-poster Paper
Session 1: Machine Translation (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Keywords:
automatic evaluation
TLDR:
Traditional machine translation evaluation relies on reference written by humans. While reference-free evaluation gets rid of the constraints of labor-intensive annotations, which can pivot easily to new domains and is more scalable. In this paper, we propose a reference-free evaluation approach th...
You can open the
#paper-P3463
channel in a separate window.
Abstract:
Traditional machine translation evaluation relies on reference written by humans. While reference-free evaluation gets rid of the constraints of labor-intensive annotations, which can pivot easily to new domains and is more scalable. In this paper, we propose a reference-free evaluation approach that characterizes evaluation as two aspects: (1) fluency: how well the translated text conforms to normal human language usage; (2) faithfulness: how well the translated text reflects the source data. We further split the faithfulness into word-level and sentence-level. Extensive experiments spanning WMT18/19/21 Metrics segment-level daRR and MQM datasets demonstrate that our proposed reference-free approach, ReFreeEval, outperforms SOTA reference-fee metrics like YiSi-2.