A Survey of Deep Learning for Mathematical Reasoning
Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, Kai-Wei Chang
Main: Resources and Evaluation Main-poster Paper
Poster Session 2: Resources and Evaluation (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 14:00-15:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 2 (18:00-19:30 UTC)
Keywords:
benchmarking, nlp datasets, evaluation methodologies, evaluation
TLDR:
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems in language has garnered...
You can open the
#paper-P35
channel in a separate window.
Abstract:
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems in language has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.