ChatGPT for Zero-shot Dialogue State Tracking: A Solution or an Opportunity?
Michael Heck, Nurul Lubis, Benjamin Matthias Ruppik, Renato Vukovic, Shutong Feng, Christian Geishauser, Hsien-chin Lin, Carel van Niekerk, Milica Gasic
Main: Dialogue and Interactive Systems Main-poster Paper
Poster Session 4: Dialogue and Interactive Systems (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 4 (15:00-16:30 UTC)
Keywords:
task-oriented, dialogue state tracking
TLDR:
Recent research on dialog state tracking (DST) focuses on methods that allow few- and zero-shot transfer to new domains or schemas. However, performance gains heavily depend on aggressive data augmentation and fine-tuning of ever larger language model based architectures. In contrast, general purpos...
You can open the
#paper-P3571
channel in a separate window.
Abstract:
Recent research on dialog state tracking (DST) focuses on methods that allow few- and zero-shot transfer to new domains or schemas. However, performance gains heavily depend on aggressive data augmentation and fine-tuning of ever larger language model based architectures. In contrast, general purpose language models, trained on large amounts of diverse data, hold the promise of solving any kind of task without task-specific training. We present preliminary experimental results on the ChatGPT research preview, showing that ChatGPT achieves state-of-the-art performance in zero-shot DST. Despite our findings, we argue that properties inherent to general purpose models limit their ability to replace specialized systems. We further theorize that the in-context learning capabilities of such models will likely become powerful tools to support the development of dedicated dialog state trackers and enable dynamic methods.