Re-appraising the Schema Linking for Text-to-SQL
Yujian Gan, Xinyun Chen, Matthew Purver
Findings: Question Answering Findings Paper
Session 4: Question Answering (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Keywords:
table qa
TLDR:
Most text-to-SQL models, even though based on the same grammar decoder, generate the SQL structure first and then fill in the SQL slots with the correct schema items. This second step depends on schema linking: aligning the entity references in the question with the schema columns or tables. This i...
You can open the
#paper-P3593
channel in a separate window.
Abstract:
Most text-to-SQL models, even though based on the same grammar decoder, generate the SQL structure first and then fill in the SQL slots with the correct schema items. This second step depends on schema linking: aligning the entity references in the question with the schema columns or tables. This is generally approached via Exact Match based Schema Linking (EMSL) within a neural network-based schema linking module. EMSL has become standard in text-to-SQL: many state-of-the-art models employ EMSL, with performance dropping significantly when the EMSL component is removed. In this work, however, we show that EMSL reduces robustness, rendering models vulnerable to synonym substitution and typos. Instead of relying on EMSL to make up for deficiencies in question-schema encoding, we show that using a pre-trained language model as an encoder can improve performance without using EMSL, giving a more robust model. We also study the design choice of the schema linking module, finding that a suitable design benefits performance and interoperability. Finally, based on the above study of schema linking, we introduce the grammar linking to help model align grammar references in the question with the SQL keywords.