An Annotated Dataset for Explainable Interpersonal Risk Factors of Mental Disturbance in Social Media Posts
Muskan Garg, Amirmohammad Shahbandegan, Amrit Chadha, Vijay Mago
Findings: Resources and Evaluation Findings Paper
Session 4: Resources and Evaluation (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Spotlight Session: Spotlight - Metropolitan East (Spotlight)
Conference Room: Metropolitan East
Conference Time: July 10, 19:00-21:00 (EDT) (America/Toronto)
Global Time: July 10, Spotlight Session (23:00-01:00 UTC)
Keywords:
nlp datasets
TLDR:
With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for in...
You can open the
#paper-P3615
channel in a separate window.
Abstract:
With a surge in identifying suicidal risk and its severity in social media posts, we argue that a more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. The success of computational intelligence techniques for inferring mental illness from social media resources, points to natural language processing as a lens for determining Interpersonal Risk Factors (IRF) in human writings. Motivated with limited availability of datasets for social NLP research community, we construct and release a new annotated dataset with human-labelled explanations and classification of IRF affecting mental disturbance on social media: (i) Thwarted Belongingness (TBe), and (ii) Perceived Burdensomeness (PBu). We establish baseline models on our dataset facilitating future research directions to develop real-time personalized AI models by detecting patterns of TBe and PBu in emotional spectrum of user's historical social media profile.