Improved Instruction Ordering in Recipe-Grounded Conversation

Duong Minh Le, Ruohao Guo, Wei Xu, Alan Ritter

Main: Dialogue and Interactive Systems Main-poster Paper

Poster Session 1: Dialogue and Interactive Systems (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 1 (15:00-16:30 UTC)
Keywords: grounded dialog
TLDR: In this paper, we study the task of instructional dialogue and focus on the cooking domain. Analyzing the generated output of the GPT-J model, we reveal that the primary challenge for a recipe-grounded dialog system is how to provide the instructions in the correct order. We hypothesize that this is...
You can open the #paper-P3638 channel in a separate window.
Abstract: In this paper, we study the task of instructional dialogue and focus on the cooking domain. Analyzing the generated output of the GPT-J model, we reveal that the primary challenge for a recipe-grounded dialog system is how to provide the instructions in the correct order. We hypothesize that this is due to the model's lack of understanding of user intent and inability to track the instruction state (i.e., which step was last instructed). Therefore, we propose to explore two auxiliary subtasks, namely User Intent Detection and Instruction State Tracking, to support Response Generation with improved instruction grounding. Experimenting with our newly collected dataset, ChattyChef, shows that incorporating user intent and instruction state information helps the response generation model mitigate the incorrect order issue. Furthermore, to investigate whether ChatGPT has completely solved this task, we analyze its outputs and find that it also makes mistakes (10.7\% of the responses), about half of which are out-of-order instructions. We will release ChattyChef to facilitate further research in this area at: https://github.com/octaviaguo/ChattyChef.