Benchmarking Large Language Model Capabilities for Conditional Generation
Joshua Maynez, Priyanka Agrawal, Sebastian Gehrmann
Main: Theme: Reality Check Main-poster Paper
Poster Session 1: Theme: Reality Check (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 1 (15:00-16:30 UTC)
Keywords:
(non-)reproducibility, evaluation, methodology
TLDR:
Pre-trained large language models (PLMs) underly most new developments in natural language processing. They have shifted the field from application-specific model pipelines to a single model that is adapted to a wide range of tasks. Autoregressive PLMs like GPT-3 or PaLM and associated techniques li...
You can open the
#paper-P3849
channel in a separate window.
Abstract:
Pre-trained large language models (PLMs) underly most new developments in natural language processing. They have shifted the field from application-specific model pipelines to a single model that is adapted to a wide range of tasks. Autoregressive PLMs like GPT-3 or PaLM and associated techniques like fewshot learning, have additionally shifted the output modality to generation instead of classification or regression. Despite their ubiquitous use, the generation quality of language models is rarely evaluated when these models are introduced. Additionally, it is unclear how existing generation tasks–while they can be used to compare systems at a high level–relate to the real world use cases for which people have been adopting them. In this work, we discuss how to adapt existing application-specific generation benchmarks to PLMs and provide an in-depth, empirical study of the limitations and capabilities of PLMs in natural language generation tasks along dimensions such as scale, architecture, input and output language. Our results show that PLMs differ in their applicability to different data regimes and their generalization to multiple languages. They further inform practitioners as to which PLMs to use for a given generation task setup. We share best practices to be taken into consideration when benchmarking generation capabilities during the development of upcoming PLMs.