Schema-Guided User Satisfaction Modeling for Task-Oriented Dialogues
Yue Feng, Yunlong Jiao, Animesh Prasad, Nikolaos Aletras, Emine Yilmaz, Gabriella Kazai
Main: Dialogue and Interactive Systems Main-oral Paper
Session 3: Dialogue and Interactive Systems (Oral)
Conference Room: Metropolitan West
Conference Time: July 11, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 11, 13:00-14:30 UTC / 13:00-14:30 GMT
Keywords:
evaluation and metrics, task-oriented
TLDR:
User Satisfaction Modeling (USM) is one of the popular choices for task-oriented dialogue systems evaluation, where user satisfaction typically depends on whether the user's task goals were fulfilled by the system. Task-oriented dialogue systems use task schema, which is a set of task attributes, to...
You can open the
#paper-P3945
channel in a separate window.
Abstract:
User Satisfaction Modeling (USM) is one of the popular choices for task-oriented dialogue systems evaluation, where user satisfaction typically depends on whether the user's task goals were fulfilled by the system. Task-oriented dialogue systems use task schema, which is a set of task attributes, to encode the user's task goals. Existing studies on USM neglect explicitly modeling the user's task goals fulfillment using the task schema. In this paper, we propose SG-USM, a novel schema-guided user satisfaction modeling framework. It explicitly models the degree to which the user's preferences regarding the task attributes are fulfilled by the system for predicting the user's satisfaction level. SG-USM employs a pre-trained language model for encoding dialogue context and task attributes. Further, it employs a fulfillment representation layer for learning how many task attributes have been fulfilled in the dialogue, an importance predictor component for calculating the importance of task attributes. Finally, it predicts the user satisfaction based on task attribute fulfillment and task attribute importance. Experimental results on benchmark datasets (i.e. MWOZ, SGD, ReDial, and JDDC) show that SG-USM consistently outperforms competitive existing methods. Our extensive analysis demonstrates that SG-USM can improve the interpretability of user satisfaction modeling, has good scalability as it can effectively deal with unseen tasks and can also effectively work in low-resource settings by leveraging unlabeled data.{Code is available at {https://github.com/amzn/user-satisfaction-modeling}.}