LAIT: Efficient Multi-Segment Encoding in Transformers with Layer-Adjustable Interaction

Jeremiah Milbauer, Annie Louis, Mohammad Javad Hosseini, Alex Fabrikant, Donald Metzler, Tal Schuster

Main: Semantics: Sentence-level Semantics, Textual Inference, and Other Areas Main-poster Paper

Poster Session 6: Semantics: Sentence-level Semantics, Textual Inference, and Other Areas (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 12, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 12, Poster Session 6 (13:00-14:30 UTC)
Keywords: natural language inference
TLDR: Transformer encoders contextualize token representations by attending to all other tokens at each layer, leading to quadratic increase in compute effort with the input length. In practice, however, the input text of many NLP tasks can be seen as a sequence of related segments (e.g., the sequence of ...
You can open the #paper-P3962 channel in a separate window.
Abstract: Transformer encoders contextualize token representations by attending to all other tokens at each layer, leading to quadratic increase in compute effort with the input length. In practice, however, the input text of many NLP tasks can be seen as a sequence of related segments (e.g., the sequence of sentences within a passage, or the hypothesis and premise in NLI). While attending across these segments is highly beneficial for many tasks, we hypothesize that this interaction can be delayed until later encoding stages. To this end, we introduce Layer-Adjustable Interactions in Transformers (LAIT). Within LAIT, segmented inputs are first encoded independently, and then jointly. This partial two-tower architecture bridges the gap between a Dual Encoder's ability to pre-compute representations for segments and a fully self-attentive Transformer's capacity to model cross-segment attention. The LAIT framework effectively leverages existing pretrained Transformers and converts them into the hybrid of the two aforementioned architectures, allowing for easy and intuitive control over the performance-efficiency tradeoff. Experimenting on a wide range of NLP tasks, we find LAIT able to reduce 30-50\% of the attention FLOPs on many tasks, while preserving high accuracy; in some practical settings, LAIT could reduce actual latency by orders of magnitude.