DrBERT: A Robust Pre-trained Model in French for Biomedical and Clinical domains

Yanis Labrak, Adrien Bazoge, Richard Dufour, Mickael Rouvier, Emmanuel Morin, Béatrice Daille, Pierre-Antoine Gourraud

Main: Machine Learning for NLP Main-poster Paper

Poster Session 5: Machine Learning for NLP (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 16:15-17:45 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 5 (20:15-21:45 UTC)
Keywords: self-supervised learning, transfer learning / domain adaptation, continual learning
Languages: french
TLDR: In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose...
You can open the #paper-P4018 channel in a separate window.
Abstract: In recent years, pre-trained language models (PLMs) achieve the best performance on a wide range of natural language processing (NLP) tasks. While the first models were trained on general domain data, specialized ones have emerged to more effectively treat specific domains. In this paper, we propose an original study of PLMs in the medical domain on French language. We compare, for the first time, the performance of PLMs trained on both public data from the web and private data from healthcare establishments. We also evaluate different learning strategies on a set of biomedical tasks. In particular, we show that we can take advantage of already existing biomedical PLMs in a foreign language by further pre-train it on our targeted data. Finally, we release the first specialized PLMs for the biomedical field in French, called DrBERT, as well as the largest corpus of medical data under free license on which these models are trained.