Decoding Symbolism in Language Models
Meiqi Guo, Rebecca Hwa, Adriana Kovashka
Main: Semantics: Lexical Main-poster Paper
Poster Session 1: Semantics: Lexical (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 1 (15:00-16:30 UTC)
Keywords:
metaphor
TLDR:
This work explores the feasibility of eliciting knowledge from language models (LMs) to decode symbolism, recognizing something (e.g.,roses) as a stand-in for another (e.g., love). We present our evaluative framework, Symbolism Analysis (SymbA), which compares LMs (e.g., RoBERTa, GPT-J) on different...
You can open the
#paper-P4058
channel in a separate window.
Abstract:
This work explores the feasibility of eliciting knowledge from language models (LMs) to decode symbolism, recognizing something (e.g.,roses) as a stand-in for another (e.g., love). We present our evaluative framework, Symbolism Analysis (SymbA), which compares LMs (e.g., RoBERTa, GPT-J) on different types of symbolism and analyze the outcomes along multiple metrics. Our findings suggest that conventional symbols are more reliably elicited from LMs while situated symbols are more challenging. Results also reveal the negative impact of the bias in pre-trained corpora. We further demonstrate that a simple re-ranking strategy can mitigate the bias and significantly improve model performances to be on par with human performances in some cases.