Varta: A Large-Scale Headline-Generation Dataset for Indic Languages

Rahul Aralikatte, Ziling Cheng, Sumanth Doddapaneni, Jackie Chi Kit Cheung

Findings: Resources and Evaluation Findings Paper

Session 1: Resources and Evaluation (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Spotlight Session: Spotlight - Metropolitan East (Spotlight)
Conference Room: Metropolitan East
Conference Time: July 10, 19:00-21:00 (EDT) (America/Toronto)
Global Time: July 10, Spotlight Session (23:00-01:00 UTC)
Keywords: corpus creation, multilingual corpora, nlp datasets, datasets for low resource languages
Languages: assamese, bhojpuri, bengali, gujarati, hindi, kannada, malayalam, marathi, nepali, oriya, punjabi, tamil, telugu, urdu
TLDR: We present Varta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes more than 41 million pairs of headlines and articles in 14 different Indic languages (and English), which come from a variety of high-quality news sources. To the best of our knowle...
You can open the #paper-P4087 channel in a separate window.
Abstract: We present Varta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes more than 41 million pairs of headlines and articles in 14 different Indic languages (and English), which come from a variety of high-quality news sources. To the best of our knowledge, this is the largest collection of curated news articles for Indic languages currently available. We use the collected data in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pre-train strong language models that outperform competitive baselines in both NLU and NLG benchmarks.