Open-Domain Hierarchical Event Schema Induction by Incremental Prompting and Verification

Sha Li, Ruining Zhao, Manling Li, Heng Ji, Chris Callison-Burch, Jiawei Han

Main: Large Language Models Main-poster Paper

Poster Session 2: Large Language Models (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 10, 14:00-15:30 (EDT) (America/Toronto)
Global Time: July 10, Poster Session 2 (18:00-19:30 UTC)
Keywords: applications
TLDR: Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. ...
You can open the #paper-P4233 channel in a separate window.
Abstract: Event schemas are a form of world knowledge about the typical progression of events. Recent methods for event schema induction use information extraction systems to construct a large number of event graph instances from documents, and then learn to generalize the schema from such instances. In contrast, we propose to treat event schemas as a form of commonsense knowledge that can be derived from large language models (LLMs). This new paradigm greatly simplifies the schema induction process and allows us to handle both hierarchical relations and temporal relations between events in a straightforward way. Since event schemas have complex graph structures, we design an incremental prompting and verification method IncPrompt to break down the construction of a complex event graph into three stages: event skeleton construction, event expansion, and event-event relation verification. Compared to directly using LLMs to generate a linearized graph, IncSchema can generate large and complex schemas with 7.2\% F1 improvement in temporal relations and 31.0\% F1 improvement in hierarchical relations. In addition, compared to the previous state-of-the-art closed-domain schema induction model, human assessors were able to cover ~10\% more events when translating the schemas into coherent stories and rated our schemas 1.3 points higher (on a 5-point scale) in terms of readability.