FiD-ICL: A Fusion-in-Decoder Approach for Efficient In-Context Learning
Qinyuan Ye, Iz Beltagy, Matthew Peters, Xiang Ren, Hannaneh Hajishirzi
Main: Machine Learning for NLP Main-poster Paper
Poster Session 4: Machine Learning for NLP (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 4 (15:00-16:30 UTC)
Keywords:
few-shot learning, meta learning
TLDR:
Large pre-trained models are capable of few-shot in-context learning (ICL), i.e., performing a new task by prepending a few demonstrations before the test input. However, the concatenated demonstrations are often excessively long and induce additional computation. Inspired by fusion-in-decoder (FiD)...
You can open the
#paper-P4254
channel in a separate window.
Abstract:
Large pre-trained models are capable of few-shot in-context learning (ICL), i.e., performing a new task by prepending a few demonstrations before the test input. However, the concatenated demonstrations are often excessively long and induce additional computation. Inspired by fusion-in-decoder (FiD) models which efficiently aggregate more passages and thus outperforms concatenation-based models in open-domain QA, we hypothesize that similar techniques can be applied to improve the efficiency and end-task performance of ICL. To verify this, we present a comprehensive study on applying three fusion methods—concatenation-based (early fusion), FiD (intermediate), and ensemble-based (late)—to ICL. We adopt a meta-learning setup where a model is first trained to perform ICL on a mixture of tasks using one selected fusion method, then evaluated on held-out tasks for ICL. Results on 11 held-out tasks show that FiD-ICL matches or outperforms the other two fusion methods. Additionally, we show that FiD-ICL (1) is 10x faster at inference time compared to concat-based and ensemble-based ICL, as we can easily pre-compute the representations of in-context examples and reuse them; (2) enables scaling up to meta-training 3B-sized models, which would fail for concat-based ICL.