The Mechanical Bard: An Interpretable Machine Learning Approach to Shakespearean Sonnet Generation
Edwin Agnew, Michelle Qiu, Lily Zhu, Sam Wiseman, Cynthia Rudin
Main: NLP Applications Main-poster Paper
Session 1: NLP Applications (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 10, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 10, Session 1 (15:00-16:30 UTC)
Keywords:
educational applications, gec, essay scoring
TLDR:
We consider the automated generation of sonnets, a poetic form constrained according to meter, rhyme scheme, and length. Sonnets generally also use rhetorical figures, expressive language, and a consistent theme or narrative. Our constrained decoding approach allows for the generation of sonnets wit...
You can open the
#paper-P4268
channel in a separate window.
Abstract:
We consider the automated generation of sonnets, a poetic form constrained according to meter, rhyme scheme, and length. Sonnets generally also use rhetorical figures, expressive language, and a consistent theme or narrative. Our constrained decoding approach allows for the generation of sonnets within preset poetic constraints, while using a relatively modest neural backbone. Human evaluation confirms that our approach produces Shakespearean sonnets that resemble human-authored sonnets, and which adhere to the genre's defined constraints and contain lyrical language and literary devices.