Single Sequence Prediction over Reasoning Graphs for Multi-hop QA
Gowtham Ramesh, Makesh Narsimhan Sreedhar, Junjie Hu
Main: Question Answering Main-poster Paper
Poster Session 3: Question Answering (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 3 (13:00-14:30 UTC)
Keywords:
multihop qa, interpretability, reasoning
TLDR:
Recent generative approaches for multi-hop question answering (QA) utilize the fusion-in-decoder method to generate a single sequence output which includes both a final answer and a reasoning path taken to arrive at that answer, such as passage titles and key facts from those passages. While such mo...
You can open the
#paper-P4501
channel in a separate window.
Abstract:
Recent generative approaches for multi-hop question answering (QA) utilize the fusion-in-decoder method to generate a single sequence output which includes both a final answer and a reasoning path taken to arrive at that answer, such as passage titles and key facts from those passages. While such models can lead to better interpretability and high quantitative scores, they often have difficulty accurately identifying the passages corresponding to key entities in the context, resulting in incorrect passage hops and a lack of faithfulness in the reasoning path. To address this, we propose a single-sequence prediction method over a local reasoning graph that integrates a graph structure connecting key entities in each context passage to relevant subsequent passages for each question. We use a graph neural network to encode this graph structure and fuse the resulting representations into the entity representations of the model. Our experiments show significant improvements in answer exact-match/F1 scores and faithfulness of grounding in the reasoning path on the HotpotQA dataset and achieve state-of-the-art numbers on the Musique dataset with only up to a 4\% increase in model parameters.