BOLT: Fast Energy-based Controlled Text Generation with Tunable Biases
Xin Liu, Muhammad Khalifa, Lu Wang
Main: Generation Main-poster Paper
Poster Session 3: Generation (Poster)
Conference Room: Frontenac Ballroom and Queen's Quay
Conference Time: July 11, 09:00-10:30 (EDT) (America/Toronto)
Global Time: July 11, Poster Session 3 (13:00-14:30 UTC)
Keywords:
efficient models
TLDR:
Energy-based models (EBMs) have gained popularity for controlled text generation due to their high applicability to a wide range of constraints. However, sampling from EBMs is non-trivial, as it often requires a large number of iterations to converge to plausible text, which slows down the decoding ...
You can open the
#paper-P4614
channel in a separate window.
Abstract:
Energy-based models (EBMs) have gained popularity for controlled text generation due to their high applicability to a wide range of constraints. However, sampling from EBMs is non-trivial, as it often requires a large number of iterations to converge to plausible text, which slows down the decoding process and makes it less practical for real-world applications. In this work, we propose BOLT, which relies on tunable biases to directly adjust the language model's output logits. Unlike prior work, BOLT maintains the generator's autoregressive nature to assert a strong control on token-wise conditional dependencies and overall fluency, and thus converges faster. When compared with state-of-the-arts on controlled generation tasks using both soft constraints (e.g., sentiment control) and hard constraints (e.g., keyword-guided topic control), BOLT demonstrates significantly improved efficiency and fluency. On sentiment control, BOLT is 7x faster than competitive baselines, and more fluent in 74.4\% of the evaluation samples according to human judges.