Text Augmented Open Knowledge Graph Completion via Pre-Trained Language Models
Pengcheng Jiang, Shivam Agarwal, Bowen Jin, Xuan Wang, Jimeng Sun, Jiawei Han
Findings: Information Extraction Findings Paper
Session 4: Information Extraction (Virtual Poster)
Conference Room: Pier 7&8
Conference Time: July 11, 11:00-12:30 (EDT) (America/Toronto)
Global Time: July 11, Session 4 (15:00-16:30 UTC)
Spotlight Session: Spotlight - Metropolitan Centre (Spotlight)
Conference Room: Metropolitan Centre
Conference Time: July 10, 19:00-21:00 (EDT) (America/Toronto)
Global Time: July 10, Spotlight Session (23:00-01:00 UTC)
Keywords:
knowledge base construction
TLDR:
The mission of open knowledge graph (KG) completion is to draw new findings from known facts. Existing works that augment KG completion require either (1) factual triples to enlarge the graph reasoning space or (2) manually designed prompts to extract knowledge from a pre-trained language model (PLM...
You can open the
#paper-P471
channel in a separate window.
Abstract:
The mission of open knowledge graph (KG) completion is to draw new findings from known facts. Existing works that augment KG completion require either (1) factual triples to enlarge the graph reasoning space or (2) manually designed prompts to extract knowledge from a pre-trained language model (PLM), exhibiting limited performance and requiring expensive efforts from experts. To this end, we propose TagReal that automatically generates quality query prompts and retrieves support information from large text corpora to probe knowledge from PLM for KG completion. The results show that TagReal achieves state-of-the-art performance on two benchmark datasets. We find that TagReal has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.